Vol. 1 No. 2 (2024): Volume 1, Issue 2, Year 2024
Articles

Pythagorean M-Polar Neutrosophic Vague Metric Space

Joeann A
Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.
Francina Shalini A
Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.

Abstract

In this paper, we have created a study on the concept of Pythagorean m-Polar Neutrosophic Vague Metric Space (PmNVMS) as a generalization of classical metric spaces, incorporating Pythagorean fuzzy sets, m-polarity, Neutrosophic components, and vague elements. This framework extends traditional distance structures to better handle uncertainty, multi-polar perspectives, and indeterminate information. We establish fundamental properties within PmNVMS.

Keywords

  • Pythagorean m-polar Neutrosophic vague set,
  • Pythagorean m-Polar set,
  • Vague Metric Space,
  • Neutrosophic Vague metric space and Pythagorean m-Polar Neutrosophic Vague Metric Space

References

  1. Alkhazaleh, S. (2015). Neutrosophic vague set theory. Critical Review, 10, 29-39.
  2. Arockiarani, I., Sumathi, I. R., & Jency, J. M. (2013). Fuzzy neutrosophic soft topological spaces. Indian Jute Mills Association, 4(10), 225-238.
  3. Atanassov, K.T. (1986) Intuitionistic Fuzzy sets. Fuzzy Sets and Systems, 20, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  4. Atanassov, K.T. (1989) More on Intuitionistic Fuzzy sets. Fuzzy Sets and Systems, 33, 37-46. https://doi.org/10.1016/0165-0114(89)90215-7
  5. Naeem, K., Riaz, M., Afzal, D. (2019). Pythagorean m-polar fuzzy sets and TOPSIS method for the selection of advertisement mode. Journal of Intelligent & Fuzzy Systems, 37(6), 8441-8458. https://doi.org/10.3233/JIFS-191087
  6. Siraj, A., Fatima, T., Afzal, D., Naeem, K., & Karaaslan, F. (2022). Pythagorean m-polar fuzzy neutrosophic topology with applications. Neutrosophic Sets and Systems, 48, 251-290.
  7. Smarandache, F. (1998) Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. American Research Press.
  8. Smarandache, F. (2005). Neutrosophic set-a generalization of the intuitionistic fuzzy set. International journal of pure and applied mathematics, 24(3), 287.
  9. Pythagorean R.R. (2013) fuzzy subsets. Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, Canada. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
  10. Yager, R.R., Abbasov, A.M. (2013) Pythagorean membership grades, complex numbers, and decision making. International Journal of Intelligent Systems, 28(5), 436-452. https://doi.org/10.1002/int.21584
  11. Zadeh, (1965) L.A. Fuzzy sets. Information and Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  12. Siraj, A., Fatima, T., Afzal, D., Naeem, K., Karaaslan, F. (2022) Pythagorean m-polar fuzzy neutrosophic topology with applications. Neutrosophic Sets and System, 48, 251-290.

Published 2024-11-09

How to Cite

A, J., & A, F. S. (2024). Pythagorean M-Polar Neutrosophic Vague Metric Space. International Journal of Humanities and Sciences, 1(2), 6–17. https://doi.org/10.34256/ijohs122